
Developer Onboarding Guide

Generated from Markdown source on 11/5/2025, 2:02:31 PM

pTreks Developer Onboarding Guide

Version

Version: 1.1.0

Created: November 5, 2025

Modified: December 18, 2025

Status: Active Development Guide

Executive Summary

This comprehensive developer onboarding guide provides everything a new developer needs to

understand, work with, and build upon the pTreks platform. pTreks is a sophisticated outdoor

activity and trekking management system built on Node.js and PostgreSQL, featuring real-time

GPS tracking, group coordination, messaging, file management, subscription-based pricing, and

comprehensive admin capabilities. This document covers system architecture, client applications

(user-facing and admin), API structure, database design, development workflows, and future

roadmap.

Who This Guide Is For:

New backend developers joining the team

Frontend developers building client applications

Full-stack developers working across the system

System architects evaluating the platform

DevOps engineers deploying and maintaining the system

Table of Contents

System Overview

Technology Stack

System Architecture

Client Applications

Admin Dashboard React Application

End-User React Client Application

API Architecture

Database Architecture

Core Features & Capabilities

Security & Authentication

Background Processes

•

•

•

•

•

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Development Workflow

Code Organization

Configuration & Environment Variables

Testing & Quality Assurance

Deployment & Operations

Future Roadmap

Quick Reference

System Overview

What is pTreks?

pTreks is a comprehensive outdoor activity management platform designed for groups to

coordinate treks, track locations in real-time, communicate during adventures, and manage

outdoor activities. The system serves two primary client types:

End-User Mobile/Web Application: For outdoor enthusiasts to create and join groups,

organize treks, share GPS locations, communicate, and upload photos/videos

Admin Dashboard Application: For administrators to manage users, monitor system

health, review analytics, handle moderation, and configure system settings

Key Value Propositions

Group Coordination: Organize and manage outdoor activities with groups of any size

Real-Time Safety: GPS location tracking during treks for safety and coordination

Communication: Built-in messaging and commenting for group and trek discussions

File Management: Secure photo/video uploads with automatic thumbnail generation

Subscription Management: Tiered pricing (Free, Pro, Team, Enterprise) with Stripe

integration

Comprehensive Analytics: Engagement scoring, activity tracking, and system-wide

analytics

Moderation Tools: Content flagging, user management, and automated moderation

workflows

System Scale

Database: 54 tables, 32 functions, 45 triggers, 270 indexes

API Endpoints: 493+ endpoints across 56 categories

Active Users: Growing user base with comprehensive activity tracking

Data Volume: ~3.5M rows (99.7% in application logs for audit trail)

Database Size: 1.9 GB

Technology Stack

Backend Core

Runtime: Node.js (latest LTS)

Framework: Express.js for RESTful API

Database: PostgreSQL 14+ with PostGIS extension for geospatial data

Authentication: JWT (JSON Web Tokens) with bcrypt password hashing

Process Management: PM2 for production deployment and background processes

12.

13.

14.

15.

16.

17.

18.

1.

2.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Key Dependencies

Database: pg (node-postgres) for PostgreSQL connectivity

Validation: Joi for request validation and schema definition

Security: Helmet.js for HTTP security headers, CORS middleware

File Processing: Sharp for image processing and thumbnail generation

Email: Nodemailer with HTML template engine

Real-Time: WebSocket support for live features

Payment: Stripe SDK for subscription management

Logging: Winston for structured logging

Development Tools

Package Manager: npm

Code Quality: ESLint (if configured)

Version Control: Git

Process Management: PM2 for development and production

Database Tools: psql for direct database access

System Architecture

Layered Architecture

pTreks follows a strict layered architecture pattern:

┌─────────────────────────────────────┐

│ Client Applications │

│ (User Mobile/Web, Admin Dashboard) │

└──────────────┬──────────────────────┘

 │ HTTP/HTTPS

 │ REST API

┌──────────────▼──────────────────────┐

│ Express.js Server │

│ ┌──────────────────────────────┐ │

│ │ Routes Layer │ │ ← Endpoint definitions

│ ├──────────────────────────────┤ │

│ │ Middleware Layer │ │ ← Auth, validation, logging

│ ├──────────────────────────────┤ │

│ │ Controllers Layer │ │ ← Business logic

│ ├──────────────────────────────┤ │

│ │ Services Layer │ │ ← Complex operations

│ ├──────────────────────────────┤ │

│ │ Database Layer │ │ ← Query execution

│ └──────────────────────────────┘ │

└──────────────┬──────────────────────┘

 │

┌──────────────▼──────────────────────┐

│ PostgreSQL Database │

│ (54 tables, PostGIS, Functions) │

└─────────────────────────────────────┘

•

•

•

•

•

•

•

•

•

•

•

•

•

Request Flow

Client Request → HTTP request to Express server

Route Matching → Express routes match URL pattern

Middleware Pipeline → Authentication, validation, rate limiting, logging

Controller → Business logic execution

Service Layer (if needed) → Complex operations (subscriptions, email, etc.)

Database Query → SQL execution via node-postgres

Response → JSON response back to client

Background Processes

The system runs 13+ background processes managed by PM2:

Main API Server: ptreks-api (port 3000)

Email Queue Processor: Processes queued emails

Subscription Maintenance Processor: Handles subscription lifecycle (expirations,

renewals, grace periods)

Account Cleanup Processor: Removes terminated accounts after grace period

Activity Logs Cleanup Processor: Prunes old logs, creates summaries

Trek Auto-Finish Processor: Automatically finishes old treks

Scheduled Deletion Processor: Permanently deletes flagged content

File Integrity Processor: Validates file system integrity

Session Cleanup Processor: Removes expired sessions

Analytics Snapshot Processor: Creates analytics snapshots

Engagement Score Processor: Calculates daily engagement scores

Abandoned Upgrade Cleanup Processor: Cleans up abandoned payment flows

All processes are configured via ecosystem.config.js with PM2 cron scheduling.

Client Applications

End-User Client Application

Purpose: Mobile/web application for outdoor enthusiasts to use pTreks

Key Capabilities (based on public API endpoints):

Authentication & User Management

User registration with email verification

Sign-in/sign-out with JWT tokens

Password reset and change

User profile management (name, bio, location, preferences)

Profile photo upload and management

Account deactivation/termination

Groups Management

Create and join groups

Browse available groups (public and private)

Search groups by name, type, location

View group details, members, and treks

Manage group membership (join, leave, favorite)

1.

2.

3.

4.

5.

6.

7.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Group messaging and comments

Group settings and preferences

Treks Management

Create treks with GPS routes

Browse upcoming and past treks

Join/leave treks

Real-time GPS location sharing during treks

View trek participants and their locations

Trek messaging and comments

Upload photos/videos during treks (moments)

Mark treks as started/finished

View trek statistics and history

Communication

Group messaging (real-time or async)

Trek messaging (during active treks)

Comments on groups, treks, and moments

Notifications for mentions, messages, and updates

Real-time WebSocket connections for live updates

File Management

Upload photos/videos to groups, treks, and moments

Automatic thumbnail generation

View and manage uploaded assets

Delete own uploads

Subscription Management

View available subscription plans (Free, Pro, Team, Enterprise)

View current subscription status

Upgrade/downgrade subscription plans

Change billing cycle (monthly/yearly)

View billing history and invoices

Manage payment methods (via Stripe)

Personal Features

View personal statistics (groups, treks, activities)

View engagement score and trends

View activity history

Manage notification preferences

View testimonials and ratings

API Endpoint Pattern: Most user-facing endpoints are under /api/v1/ without /admin/

prefix

Authentication: Bearer token (JWT) required for most endpoints

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Admin Dashboard Application

Purpose: Comprehensive web-based administrative interface for system management,

monitoring, and configuration

The pTreks Admin Dashboard is a powerful, enterprise-grade React application designed for

administrators, system administrators, and developers to manage every aspect of the pTreks

platform. Built with modern React patterns and a focus on data visualization, real-time

monitoring, and efficient workflow management, the admin dashboard provides complete control

over the system while maintaining an intuitive and productive user experience.

Key Capabilities (based on /admin/ API endpoints):

User Management

View all users with pagination, search, and filtering

View comprehensive user details (profile, roles, subscriptions, activity, engagement

scores)

Edit user profiles and roles

Activate/deactivate user accounts

Terminate user accounts with secure confirmation workflow

View user engagement scores and analytics

Manage user sessions (view active sessions, terminate sessions)

View detailed user activity logs

Filter users by account status (active, terminated, deactivated)

View user's groups and treks from user detail page

Content Moderation

View flagged content (groups, treks, comments, messages)

Review flag history and reasons

Approve/reject flags

Hide/restore content

Delete content permanently (with scheduled deletion support)

View moderation queue and statistics

Content flag workflow management

Analytics & Reporting

System-wide engagement statistics with interactive charts

User engagement leaderboards

Engagement score distribution analysis

Engagement trends over time (historical analytics)

User segmentation (high/medium/low engagement)

Dashboard with comprehensive analytics widgets

Alert users below engagement threshold

Activity logs and audit trails

Real-time system monitoring with live metrics

Advanced analytics with customizable date ranges

Entity statistics (groups, treks, users, content)

Content statistics (messages, comments, assets, moments)

Process monitoring with execution history

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Subscription Management

View all subscriptions with pagination and filtering

View subscription details and history

Monitor subscription lifecycle (active, grace period, suspended, etc.)

View billing transactions with comprehensive filtering

Manage subscription plans (create, edit, delete)

Configure plan features (title, description, display order, basic/advanced)

Live preview of subscription plans as end-users see them

Plan comparison table for side-by-side feature comparison

View billing configuration (enabled status, currency, payment providers, etc.)

Feature flag management (yearly billing, pricing enabled)

Invoice management with PDF viewing and download

Subscription lifecycle tracking and management

System Configuration

Manage system parameters (rate limits, email limits, cooldown periods, etc.)

Configure email rate limiting per tier (free, paid, admin)

View and update email queue status

Process email queue manually

View email archives with search

Manage background processes (restart, monitor, view logs)

View system health and status

System parameter editing with validation

Email system configuration and monitoring

Email Management

View email queue status and statistics

Preview queued emails with full content

Retry failed emails

Process email queue manually

View email archives with pagination

Search email history

View recipient email history

Email rate limiting configuration per user tier

Admin invitation management

Email system monitoring and health checks

Background Process Management

View status of all 13+ background processes

Real-time process health monitoring

Restart background processes manually

Monitor process execution logs and activity

View process execution history and timeline

Process configuration display (dynamic, server-driven)

Manual trigger capabilities for certain processes

Process log viewing with filtering

Security & Audit

View security audit logs with filtering

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Monitor password reset tokens

View session management logs

Review access patterns

Account lifecycle management (activate, deactivate, terminate)

Role management and assignment

Security compliance reporting

Audit trail navigation

API Documentation & Reference

Interactive API reference browser

Categorized endpoint documentation (56+ categories)

Search and filter endpoints by method, category, keywords

View API documentation as Markdown

Download API documentation as PDF or JSON (OpenAPI)

Integration with Swagger documentation

Dynamic endpoint keyword generation from path segments

Documentation Management

Server documentation browser with categorized organization

15+ document categories (Implementation Plans, API Documentation, Database, etc.)

Collapsible category sections with document summaries

View documents as Markdown with live rendering

Download documents as Markdown, HTML, or PDF

Document metadata display (category, summary, creation date)

Statistics & Monitoring

Real-time server monitoring with live metrics

Server log statistics and analysis

User activity monitoring with tier-based filtering

Rate limiting rule management (create, edit, delete, view violations)

System monitoring dashboard

Advanced analytics with chart visualizations (Recharts)

Historical analytics with date range selection

Process monitoring with execution history

Content Management

Bug reports management with reporter linking

Testimonials management with approval workflow

FAQ management with categories

View and manage all content types (groups, treks, comments, messages, assets,

moments)

Content detail pages with comprehensive information

Status management for groups and treks

API Endpoint Pattern: All admin endpoints are under /api/v1/admin/

Authentication: Bearer token (JWT) required with Admin+ role (admin, sysadmin, root)

Role Requirements: Most admin endpoints require admin role minimum, some require

sysadmin or root

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Admin Dashboard React Application

Overview

The pTreks Admin Dashboard is a sophisticated, production-ready React.js web application built

specifically for platform administrators, system operators, and developers. Unlike the end-user

client which focuses on outdoor activity management, the admin dashboard provides

comprehensive system administration, monitoring, analytics, and configuration capabilities. The

application is designed with a focus on data density, real-time monitoring, efficient workflows,

and powerful administrative tools.

Technology Stack

Core Framework:

React 18.2.0: Modern React with hooks, concurrent features, and improved performance

React Router DOM 6.3.0: Client-side routing with nested routes and navigation

React Scripts 5.0.1: Create React App configuration for development and build

State Management:

React Context API: Minimal global state management (authentication)

Local Storage: Token persistence and user preference storage

Component State: Extensive use of useState and useEffect for component-level

state management

Service Layer: Centralized API communication via service modules

UI Libraries & Tools:

Recharts 3.1.2: Comprehensive charting library for data visualization (line charts, bar

charts, pie charts, etc.)

Axios 1.4.0: HTTP client for API communication with interceptors

JWT Decode 3.1.2: JWT token parsing for role-based access control

HTML-to-Text 9.0.5: Email content rendering and formatting

Development Tools:

Port 4100: Development server port (configurable via PORT environment variable)

ESLint: Code quality and style enforcement

Web Vitals: Performance monitoring

Application Architecture

Component Structure:

src/

├── components/

│ ├── signedin/ # All authenticated admin pages

│ │ ├── api/ # API documentation and reference

│ │ ├── assets/ # Asset management

│ │ ├── billing/ # Invoice management

│ │ ├── bugreports/ # Bug report management

│ │ ├── comments/ # Comment moderation

│ │ ├── dashboard/ # Main dashboard

│ │ ├── documentation/ # Server documentation viewer

│ │ ├── email/ # Email queue and archives

•

•

•

•

•

•

•

•

•

•

•

•

•

•

│ │ ├── engagement/ # Engagement score management

│ │ ├── faqs/ # FAQ management

│ │ ├── groups/ # Group management

│ │ ├── messages/ # Message moderation

│ │ ├── moments/ # Moment management

│ │ ├── security/ # Security, audit, lifecycle management

│ │ ├── server/ # Server configuration and monitoring

│ │ ├── statistics/ # Analytics and statistics

│ │ ├── subscription/ # Subscription and billing management

│ │ ├── testimonials/ # Testimonial management

│ │ ├── treks/ # Trek management

│ │ └── users/ # User management

│ ├── shared/ # Reusable components

│ │ ├── AdminHeader.js

│ │ ├── AdminFooter.js

│ │ ├── AdminPageLayout.js

│ │ ├── Breadcrumbs.js

│ │ ├── CircularProgress.js

│ │ ├── PageLayout.js

│ │ ├── PageNavigation.js

│ │ └── QuickSearch.js

│ └── SignIn.js # Authentication page

├── services/ # API service layer

│ ├── authService.js

│ ├── invoiceService.js

│ ├── notificationsService.js

│ ├── planFeaturesService.js

│ ├── subscriptionLifecycleService.js

│ └── ...

├── constants/ # Application constants

│ ├── constants.js # API URLs, environment config

│ ├── notificationConfig.js

│ └── pages.js # Page metadata and keywords

└── App.js # Main application component

Routing Architecture:

Authentication: Sign-in page (/) with protected route redirect

Dashboard (/dashboard): Main admin dashboard with system overview and quick

navigation

User Management (/users , /users/:userId): User list with pagination, search,

filtering, and detailed user views

Content Management: Groups (/groups), Treks (/treks), Comments (/comments),

Messages (/messages), Assets (/assets), Moments (/moments)

Subscription Management: Plans (/subscription-management), Features (/

subscription-plan-features), Lifecycle (/subscription-lifecycle-management),

Invoices (/invoices)

Analytics & Statistics: Statistics (/statistics), Engagement Scores (/engagement-

scores), Leaderboards, Advanced Analytics

Security & Audit: Security (/security), Account Status (/account-status), Lifecycle

Management (/lifecycle-management), Session Management (/session-

management), Audit Compliance (/audit-compliance), Role Management (/role-

management)

•

•

•

•

•

•

•

Server Management: Server (/server), Background Processes (/background-

processes), System Parameters (/system-parameters), File Management (/file-

management)

Email Management: Email System (/email-system), Email Queue (/email-queue),

Email Archives (/email-archives), Email Rate Limiting (/email-rate-limiting)

Documentation: API Reference (/api-reference), Server Documentation (/

documentation)

Content Moderation: Bug Reports (/bug-reports), Testimonials (/testimonials),

FAQs (/faqs)

Monitoring: System Monitoring (/system-monitoring), Real-Time Monitor (/server-

real-time-monitor), Process Monitor (/process-monitor)

Protected Routes: All routes except / (sign-in) require authentication and appropriate admin

role. Protected routes automatically redirect to sign-in if not authenticated.

State Management

State Patterns:

Local State: Component-specific state using useState hooks

Service Layer State: API responses cached in component state

Context State: Minimal global state via authService (authentication token and user

data)

Derived State: Computed values from props or API responses

URL State: Search parameters for filtering, pagination, and tab navigation

Authentication Flow:

User signs in → JWT token stored in localStorage

Token included in Authorization: Bearer <token> header for all API requests

authService manages authentication state and user profile

JWT token decoded to extract user roles and rank for access control

Protected routes check authService.isAuthenticated() before rendering

Role-based UI rendering (buttons, links, sections) based on user rank

Token expiration handled via axios interceptor (401 redirects to sign-in)

Component Organization

Shared Components (src/components/shared/):

Layout Components: AdminPageLayout (Header + Footer wrapper), PageLayout

(alternative layout)

Navigation: AdminHeader (navigation, user menu, role-based navigation),

AdminFooter (footer links)

Navigation Helpers: Breadcrumbs (breadcrumb navigation), PageNavigation (back/

home navigation)

UI Elements: CircularProgress (loading spinner), QuickSearch (dashboard quick

navigation search)

Error Handling: Error boundaries and error state displays

Feature-Specific Components:

Dashboard: Dashboard.js - Main admin dashboard with system overview, quick stats,

and navigation

Users: UsersList.js , UserDetail.js , UserGroupsList.js , UserTreksList.js

Content: GroupsList.js , GroupDetail.js , TreksList.js , TrekDetail.js ,

CommentsList.js , MessagesList.js

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

4.

5.

6.

7.

•

•

•

•

•

•

•

•

Subscriptions: SubscriptionManagement.js , PlanFeaturesManagement.js ,

SubscriptionLifecycleManagement.js , InvoiceManagement.js

Analytics: Statistics.js , EngagementScores.js , Leaderboards.js ,

AdvancedAnalytics.js

Security: Security.js , AccountStatus.js , LifecycleManagement.js ,

SessionManagement.js , AuditCompliance.js , RoleManagement.js

Server: Server.js , BackgroundProcesses.js , SystemParameters.js ,

FileManagement.js , ServerLogs.js

Email: EmailSystem.js , EmailQueue.js , EmailArchives.js ,

EmailRateLimiting.js

Documentation: ApiReference.js , Documentation.js , MdDocument.js

Naming Conventions:

Components: PascalCase (e.g., Dashboard.js , UserDetail.js)

Files: Match component name exactly

Folders: lowercase-only (e.g., users , subscription , security)

Services: camelCase with Service suffix (e.g., authService.js ,

invoiceService.js)

Styling Approach

CSS Architecture:

Component-Scoped CSS: Inline styles using <style jsx="true"> blocks for

component-specific styling

Global Styles: App-level styles in App.css

Responsive Design: Mobile-first approach with media queries

Dark Theme: Consistent black/near-black theme (#000000 , #0a0a0a , #1a1a1a)

matching pTreks ecosystem

Accent Colors: Green (#4CAF50) for primary actions, blue for information

Style Patterns:

Color Scheme: Pure black backgrounds (#000000 or #0a0a0a), #1a1a1a content

boxes, #333 borders, #2a2a2a secondary backgrounds

Typography: Nunito font family (consistent with end-user client), consistent font sizes

Spacing: Consistent padding and margins using rem units

Responsive Breakpoints: Mobile (480px), Tablet (768px), Desktop (1024px+)

Table Styling: Comprehensive table styles with hover effects, striped rows, and

responsive design

Card Layouts: Responsive grid layouts for metrics, statistics, and content cards

Responsive Design:

Mobile: Single column layouts, stacked elements, compact navigation, collapsible

sections

Tablet: 2-column grids where appropriate, optimized spacing, touch-friendly buttons

Desktop: Multi-column layouts, full feature sets, expanded navigation, data-dense

displays

API Integration

API Client (src/services/):

Service Modules: Separate service files for each domain (auth, invoices, subscriptions,

etc.)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Axios Instance: Configured with base URL (BACKEND_BASE_URL from constants)

Request Interceptor: Automatically adds JWT token to all requests

Response Interceptor: Handles 401 errors (token expiration) with automatic redirect

Error Handling: Centralized error logging and user-friendly error messages

Base URL: http://localhost:3000/api/v1 (development) or configured production

URL

API Patterns:

// Standard API call pattern

import { authService } from '../services/authService';

import { BACKEND_BASE_URL } from '../constants';

const fetchData = async () => {

 try {

 const token = authService.getToken();

 const response = await fetch(`${BACKEND_BASE_URL}/admin/endpoint`, {

 headers: {

 'Authorization': `Bearer ${token}`,

 'Content-Type': 'application/json'

 }

 });

 const data = await response.json();

 return data;

 } catch (error) {

 console.error('API Error:', error);

 // Handle error (toast notification, etc.)

 }

};

Service Layer (src/services/):

authService.js : Authentication, token management, user data retrieval, role checking

invoiceService.js : Invoice management (list, details, PDF download/regeneration,

summary, export)

subscriptionLifecycleService.js : Subscription lifecycle management (admin

endpoints)

planFeaturesService.js : Plan features CRUD operations

notificationsService.js : Notification management and display

Key Features & User Experience

Dashboard & Navigation:

Main Dashboard: System overview with health status, quick stats, notification center,

and quick navigation

Quick Search: Global search functionality for quick navigation to any page

Breadcrumb Navigation: Context-aware breadcrumb navigation for deep pages

Role-Based Navigation: Menu items and features displayed based on user role (admin,

sysadmin, root)

Notification Center: System-wide notifications with dismissal and priority levels

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

User Management:

User List: Paginated table with search, filtering by account status (active/terminated/

deactivated)

User Detail: Comprehensive user profile view with tabs for profile, groups, treks,

subscriptions, activity

Account Actions: Activate, deactivate, terminate accounts with secure confirmation

dialogs

Role Management: View and edit user roles

Activity Tracking: View user activity logs and engagement scores

Content Management:

Content Lists: Paginated lists for all content types (groups, treks, comments, messages,

assets, moments)

Content Detail Pages: Comprehensive detail views with metadata, status, and related

content

Content Moderation: Flag management, hide/restore, delete with scheduled deletion

Status Management: View and update content status (groups, treks)

Subscription & Billing:

Plan Management: Create, edit, delete subscription plans

Feature Management: Manage plan features with title, description, display order, basic/

advanced classification

Live Preview: Preview subscription plans exactly as end-users see them

Plan Comparison: Side-by-side feature comparison table

Subscription Lifecycle: Monitor and manage subscription lifecycle (active, grace period,

suspended, etc.)

Billing Transactions: View and filter billing transactions with comprehensive filtering

Invoice Management: View invoices, download PDFs, regenerate PDFs, view invoice

details with embedded PDF viewer

Feature Flags: Manage yearly billing and pricing enabled flags

Analytics & Statistics:

Dashboard Analytics: System-wide statistics with interactive charts (Recharts)

Engagement Scores: User engagement scoring, leaderboards, distribution analysis

Historical Analytics: Trends over time with customizable date ranges

Entity Statistics: Detailed statistics for groups, treks, users, content

Content Statistics: Statistics for messages, comments, assets, moments

Real-Time Monitoring: Live system metrics and server monitoring

Process Monitoring: Background process execution history and status

Security & Audit:

Security Dashboard: Security overview with audit logs

Account Lifecycle: Manage account status (activate, deactivate, terminate)

Session Management: View and manage user sessions

Audit Compliance: Comprehensive audit trail navigation

Role Management: User role assignment and management

Server Management:

System Configuration: Edit system parameters (rate limits, email limits, etc.)

Background Processes: Monitor and restart 13+ background processes

Process Logs: View process execution logs and activity

System Parameters: View and edit system-wide configuration

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

File Management: System file management and integrity checks

Server Logs: View and search application logs

Email Management:

Email Queue: View and manage queued emails

Email Archives: Search and view email history

Email Rate Limiting: Configure email limits per user tier

Email System: Email system configuration and monitoring

Documentation:

API Reference: Interactive API documentation browser with 56+ categories, search,

filtering

Server Documentation: Categorized documentation viewer with 15+ categories

Document Viewing: Markdown rendering, PDF download, HTML export

Development Patterns

Component Patterns:

Functional Components: All components use function syntax with hooks (no class

components)

Custom Hooks: Reusable logic extracted to custom hooks where appropriate

Error Boundaries: Error handling at component level

Loading States: Consistent loading indicators (CircularProgress component)

Empty States: User-friendly empty state messages

Conditional Rendering: Extensive use of conditional rendering based on authentication,

roles, and data availability

Protected Routes: Authentication and role checks before rendering protected content

Data Fetching:

useEffect: Fetch data on component mount

Dependency Arrays: Proper dependency management to prevent infinite loops

Loading States: Show spinners during data fetching

Error Handling: Display user-friendly error messages

Pagination: Server-side pagination with URL state management

Filtering: URL-based filtering with query parameters

Form Handling:

Controlled Components: All form inputs are controlled

Validation: Client-side validation before API calls

Error Display: Inline error messages for form fields

Submit Handling: Prevent double-submission, show loading states

Modal Forms: Extensive use of modals for create/edit operations

Navigation:

Programmatic Navigation: Use useNavigate hook from React Router

Route Parameters: Access via useParams hook

Query Parameters: Access via useSearchParams hook for filtering and pagination

State Passing: Pass state between routes via navigate(path, { state: {...} })

Modal Patterns:

Full Modal: Overlay with backdrop, prevents outside clicks

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Confirmation Dialogs: For destructive actions (with double confirmation for critical

operations)

Form Modals: For editing and creating entities

Toast Notifications: For success/error feedback (non-blocking)

Data Visualization:

Recharts Integration: Interactive charts for analytics and statistics

Responsive Charts: Charts adapt to container size

Chart Types: Line charts, bar charts, pie charts, area charts

Real-Time Updates: Charts update with new data

File Organization Best Practices

Component Files:

Each component in its own file

Component and styles in same file (inline styles)

Related components grouped in feature folders

Detail components often nested in same folder as list components

Constants:

Application-wide constants in constants.js

API endpoints, URLs, configuration values

Environment-specific values (development vs. production)

Page metadata in constants/pages.js

Services:

One service file per domain (auth, invoices, subscriptions, etc.)

Service functions handle API communication

Error handling centralized in services

Token management handled by authService

Utilities:

Utility functions for common operations

Date formatting, number formatting

Data transformation helpers

Development Workflow

Getting Started:

Install Dependencies: npm install

Start Development Server: npm start (runs on port 4100)

Configure Backend: Ensure backend server is running on port 3000

Environment Setup: Configure constants.js for development/production

Development Commands:

npm start : Start development server (port 4100)

npm build : Build production bundle

npm test : Run test suite (if configured)

Code Quality:

Follow React best practices (hooks, functional components)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

4.

•

•

•

•

Use ESLint for code quality

Maintain consistent naming conventions

Add comments for complex logic

Handle errors gracefully

Remove debug code before committing

Testing:

Test user flows end-to-end

Test responsive design on multiple screen sizes

Test authentication and role-based access

Test API integration

Test error scenarios

Test pagination and filtering

Integration with Backend

API Endpoints:

All admin endpoints prefixed with /api/v1/admin/

Authentication required for all endpoints (JWT token)

Role-based access control (admin, sysadmin, root)

Standard request/response format (JSON)

Error responses follow consistent structure

Pagination:

Server-side pagination with page and limit parameters

URL-based pagination state

Pagination controls with page numbers and page size selection

Filtering:

URL-based filtering with query parameters

Filter state synchronized with URL

Filter clearing and reset functionality

Real-Time Features:

Polling for real-time data when needed (e.g., process status, server metrics)

Optimistic updates for better UX (e.g., immediate UI updates before API confirmation)

Auto-refresh for monitoring pages

File Operations:

PDF download and viewing via blob URLs

File upload with progress tracking

Secure file access with authentication

Error Handling:

Network errors: Display user-friendly messages

401 errors: Automatic redirect to sign-in

403 errors: Show permission denied message

404 errors: Show not found message

500 errors: Show server error message

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Performance Considerations

Optimization Strategies:

Code Splitting: Lazy load routes and components where appropriate

Memoization: Use React.memo for expensive components

Pagination: Server-side pagination to limit data transfer

Debouncing: Debounce search inputs to reduce API calls

Caching: Cache API responses in component state when appropriate

Bundle Size:

Tree shaking for unused code

Dynamic imports for large libraries (if needed)

Optimize images and assets

Unique Features

Dynamic Configuration:

Background process configuration loaded dynamically from server

System parameters editable through UI

Feature flags for enabling/disabling features (yearly billing, pricing)

Comprehensive Filtering:

Multi-field filtering with URL synchronization

Filter persistence across navigation

Clear filters functionality

Data Visualization:

Interactive charts for analytics

Real-time metrics display

Historical trend analysis

PDF Management:

Embedded PDF viewer for invoices

PDF download and regeneration

Secure PDF access with authentication

Role-Based UI:

UI elements shown/hidden based on user role

Action buttons disabled for unauthorized users

Navigation items filtered by role

Future Enhancements

Planned Features:

Enhanced real-time monitoring with WebSocket support

Advanced search across all content types

Bulk operations for user management

Export functionality for reports and analytics

Enhanced mobile responsiveness

Keyboard shortcuts for power users

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Technical Improvements:

State management optimization (consider Redux/Zustand if needed)

Performance monitoring integration

Enhanced error tracking

Automated testing suite

TypeScript migration (if desired)

Enhanced accessibility (ARIA labels, keyboard navigation)

Resources for Developers

Key Files to Understand:

src/App.js : Main application component with routing and authentication

src/components/signedin/dashboard/Dashboard.js : Main dashboard component

src/services/authService.js : Authentication and token management

src/constants.js : Application configuration (environment variables, URLs, API

endpoints)

src/components/shared/AdminPageLayout.js : Main layout wrapper (Header + Footer)

src/components/shared/AdminHeader.js : Navigation header with user menu, role-

based navigation

Documentation:

React documentation: https://react.dev

React Router documentation: https://reactrouter.com

Recharts documentation: https://recharts.org

Axios documentation: https://axios-http.com

Getting Help:

Review existing components for patterns

Check shared components for reusable solutions

Review API integration examples in feature components

Consult backend API documentation for endpoint details

Check constants/pages.js for page metadata and keywords

End-User React Client Application

Overview

The pTreks end-user client is a modern, responsive React.js web application that provides a

comprehensive interface for outdoor enthusiasts to manage groups, organize treks, track GPS

locations, communicate with fellow adventurers, and manage their subscriptions. The application

is built with a focus on user experience, performance, and maintainability.

Technology Stack

Core Framework:

React 18.2.0: Modern React with hooks, concurrent features, and improved performance

React Router DOM 6.30.1: Client-side routing with nested routes and navigation

React Scripts 5.0.1: Create React App configuration for development and build

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

https://react.dev
https://reactrouter.com
https://recharts.org
https://axios-http.com

State Management:

React Context API: Global state management for authentication, user data, groups,

treks, stats, and notifications

Local Storage: Token persistence and user preference storage

Custom Hooks: Reusable stateful logic (useAuth , useToast , useStats , etc.)

UI Libraries & Tools:

React Icons 5.5.0: Comprehensive icon library (Font Awesome, Material Design, etc.)

GSAP 3.13.0: Advanced animations and transitions

Leaflet 1.9.4 / React-Leaflet 4.2.1: Interactive maps for GPS tracking and route

visualization

Marked 12.0.0: Markdown parsing for documentation and content rendering

Axios 1.11.0: HTTP client for API communication with interceptors

Development Tools:

Port 4000: Development server port (configurable via PORT environment variable)

ESLint: Code quality and style enforcement

Web Vitals: Performance monitoring

Application Architecture

Component Structure:

src/

├── components/

│ ├── authentication/ # Sign-in, sign-up, password reset

│ ├── developer/ # Developer documentation and tools

│ ├── faq/ # Frequently asked questions

│ ├── help/ # Help system with topics

│ ├── home/

│ │ ├── signedIn/ # Authenticated user features

│ │ │ ├── account/ # Account management

│ │ │ ├── groups/ # Group management

│ │ │ ├── treks/ # Trek management

│ │ │ └── invoices/ # Billing and invoices

│ │ └── signedOut/ # Public pages (pricing, features, etc.)

│ ├── onboarding/ # New user onboarding flow

│ ├── search/ # Global search functionality

│ └── shared/ # Reusable components

├── contexts/ # React Context providers

├── services/ # Business logic services

├── utils/ # Utility functions

└── Constants.js # Application constants

Routing Architecture:

Homepage (/ or /main): Shows different content based on authentication status

Signed-out: Marketing content (Hero, About, Testimonials, Image Gallery,

Carousel)

Signed-in: Dashboard with groups overview (SignedInGroups component)

Public Routes: Pricing (/pricing), plan comparison (/pricing/compare), features (/

features/*), about (/about), contact (/contact), FAQ (/faq), help (/help),

developer recruitment (/join)

•

•

•

•

•

•

•

•

•

•

•

•

◦

◦

•

Authentication Routes: Sign-in (/signin), sign-up (/signup), email verification (/

signup/confirm), password reset (/forgot-password , /reset-password), invite

verification (/invite/verify), sign-out (/signout)

Onboarding Routes: Desktop (/onboarding/1 through /onboarding/7), Mobile (/

mobile-onboarding/1 through /mobile-onboarding/5)

Protected Routes: Dashboard (/account), groups (/groups), treks (/treks),

account management, billing (/account/billing , /invoices)

Dynamic Routes: Group details (/group/:groupId/*), trek details (/trek/:trekId/

*), invoice details (/invoice/:invoiceNumber)

Nested Routes: Group management (comments, messages, files, users, QR codes,

invitations), trek management (comments, messages, moments, files, users, participants,

QR codes, invitations)

Legal Routes: Terms of Use (/tou), Privacy Policy (/pp)

Developer Routes: Documentation (/developer/documents), document viewers (/

developer/document/:filename , /developer/client-document/:filename)

State Management

Context Providers (wrapped in App.js):

AuthContext: User authentication, profile data, account status

ToastContext: Global toast notifications for user feedback

GroupsContext: Groups data and operations

StatsContext: User statistics and engagement scores

UpcomingTreksContext: Upcoming treks data

ModeContext: Application mode (beginner/advanced)

State Patterns:

Local State: Component-specific state using useState

Context State: Global shared state via Context API

Derived State: Computed values from props or other state

Server State: Data fetched from API, cached in context or local storage

Authentication Flow:

User signs in → JWT token stored in localStorage

Token included in Authorization: Bearer <token> header for all API requests

AuthContext manages authentication state and user profile

Protected routes check isAuthenticated from context

Token expiration handled via axios interceptor (401 redirects to sign-in)

Component Organization

Shared Components (src/components/shared/):

Layout Components: Layout (Header + Footer wrapper), PageWrapper (wraps

Layout with App div)

Core Layout: Header (navigation, user menu, mobile menu), Footer (links, copyright,

developer section)

Modals: DeleteConfirmationModal , EditCommentModal , EditMessageModal ,

NotificationConfirmationDialog , AccountStatusModal

Forms: NewCommentModal , NewMessageModal

UI Elements: CircularProgress , DashboardCard , EngagementScoreCard , Toast ,

NotificationBanner

Specialized: QRCodeScanner (for joining groups/treks), GeocodingIndicator ,

InvitationLimitsDisplay , CaptchaModal

•

•

•

•

•

•

•

1.

2.

3.

4.

5.

6.

•

•

•

•

1.

2.

3.

4.

5.

•

•

•

•

•

•

Error Handling: ServerErrorHandler (displays server errors to users)

Feature-Specific Components:

Groups: Groups , GroupNew , GroupEdit , GroupManageFiles , GroupManageUsers

Treks: Treks , TrekNew , TrekEdit , TrekDetails , TrekMessages , TrekComments

Account: Dashboard , Profile , BillingDashboard , Invoices

Billing: Pricing , PricingCompare , PaymentConfirmationModal ,

PlanChangeSuccessModal

Naming Conventions:

Components: PascalCase (e.g., Dashboard.js , GroupEdit.js)

Files: Match component name exactly

CSS Files: Same name as component (e.g., Dashboard.css)

Folders: lowercase-only (e.g., groups , treks , account)

Styling Approach

CSS Architecture:

Component-Scoped CSS: Each component has its own .css file

Global Styles: App-level styles in App.css

Responsive Design: Mobile-first approach with media queries

Dark Theme: Consistent black/near-black theme (#000000 , #0a0a0a , #1a1a1a)

Accent Colors: Green (#4CAF50) for primary actions, blue for information

Style Patterns:

Color Scheme: Pure black backgrounds, #1a1a1a content boxes, #333 borders

Typography: Nunito font family, consistent font sizes (12px base, scaled headings)

Spacing: Consistent padding and margins using rem units

Responsive Breakpoints: Mobile (480px), Tablet (768px), Desktop (1024px+)

CSS Overrides: Use !important when necessary for component isolation

Responsive Design:

Mobile: Single column layouts, stacked elements, compact navigation

Tablet: 2-column grids where appropriate, optimized spacing

Desktop: Multi-column layouts, full feature sets, expanded navigation

API Integration

API Client (src/utils/api.js):

Axios Instance: Configured with base URL and default headers

Request Interceptor: Automatically adds JWT token to all requests

Response Interceptor: Handles 401 errors (token expiration) with automatic redirect

Error Handling: Centralized error logging and user-friendly error messages

Base URL: http://localhost:3000/api/v1 (development) or configured production

URL

API Patterns:

// Standard API call pattern

import api from '../utils/api';

const fetchData = async () => {

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

 try {

 const response = await api.get('/endpoint');

 return response.data;

 } catch (error) {

 console.error('API Error:', error);

 // Handle error (toast notification, etc.)

 }

};

Service Layer (src/services/):

StatsService.js : User statistics and engagement score calculations, formatting utilities

(date, time, distance, storage size, duration)

NotificationsService.js : Notification management and sending (group/trek

notifications, mentions, etc.)

EmailUsageService.js : Email invitation limit tracking and validation

SystemParametersService.js : System configuration fetching (rate limits, email limits,

etc.)

Key Features & User Experience

Authentication & Onboarding:

Email-based registration with verification code

Optional onboarding flow: 7-step desktop onboarding or 5-step mobile onboarding

(accessible via header button, not automatic)

Onboarding covers: Welcome, features overview, getting started, creating groups,

creating treks, GPS tracking, and completion

Password reset with secure token flow (forgot password → email verification → reset)

Account status monitoring (active, suspended, etc.) via AccountStatusModal

Session management with automatic token refresh

Email verification required before full account access

Invite code verification for group/trek invitations

Group Management:

Create, edit, and delete groups (public/private)

Group member management with role-based permissions

QR code generation for easy group joining

Group messaging and comments

File upload and management

Group search and discovery

Trek Management:

Create treks with GPS route planning

Real-time GPS location tracking during treks

Trek messaging and comments

Photo/video uploads (moments) during treks

Trek statistics and history

Participant management

Communication:

Real-time messaging (groups and treks)

Comment threads on groups, treks, and moments

Edit/delete own messages and comments

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Notification system for mentions and updates

Private and public communication options

Billing & Subscriptions:

View available plans (Free, Pro, Team, Enterprise)

Upgrade/downgrade subscriptions

Billing cycle management (monthly/yearly)

Invoice viewing and PDF download

Stripe payment integration

Plan comparison table

Pending plan change management

Dashboard & Analytics:

Personal statistics overview (groups, treks, messages, comments, assets, sessions)

Engagement score display with level indicators

Activity history and trends

Upcoming treks (from UpcomingTreksContext)

Recent groups (from GroupsContext)

Profile photo management

Quick actions and navigation

Search & Discovery:

Global search functionality (/search)

Search groups, treks, and users

Filter and sort results

Help system with searchable topics (/help)

Context-aware help (pre-filled search terms)

Legal & Documentation:

Terms of Use and Privacy Policy pages

Developer documentation viewer (markdown rendering)

Client and server document viewing

Document categorization and navigation

Developer Features (for developers+):

Access to technical documentation

Server and client document viewers

Developer onboarding guide

API documentation access

Development Patterns

Component Patterns:

Functional Components: All components use function syntax with hooks (no class

components)

Custom Hooks: Reusable logic extracted to custom hooks (e.g., useAuth , useToast ,

useStats , useGroups)

Error Boundaries: Error handling at component level (ErrorTracker utility)

Loading States: Consistent loading indicators (CircularProgress component)

Empty States: User-friendly empty state messages (e.g., "No groups yet", "No treks

found")

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Conditional Rendering: Extensive use of conditional rendering based on authentication,

roles, and data availability

Protected Routes: Authentication checks before rendering protected content

Data Fetching:

useEffect: Fetch data on component mount

Dependency Arrays: Proper dependency management to prevent infinite loops

Loading States: Show spinners during data fetching

Error Handling: Display user-friendly error messages

Caching: Cache data in context or local storage when appropriate

Form Handling:

Controlled Components: All form inputs are controlled

Validation: Client-side validation before API calls

Error Display: Inline error messages for form fields

Submit Handling: Prevent double-submission, show loading states

Navigation:

Programmatic Navigation: Use useNavigate hook from React Router

Route Parameters: Access via useParams hook

Query Parameters: Access via useSearchParams hook

State Passing: Pass state between routes via navigate(path, { state: {...} })

Modal Patterns:

Full Modal: Overlay with backdrop, prevents outside clicks

Confirmation Dialogs: For destructive actions

Form Modals: For editing and creating entities

Toast Notifications: For success/error feedback (non-blocking)

File Organization Best Practices

Component Files:

Each component in its own file

Component and CSS file in same directory

Related components grouped in feature folders

Constants:

Application-wide constants in Constants.js

API endpoints, URLs, configuration values

Environment-specific values (development vs. production)

Utilities (src/utils/):

api.js : Axios instance with interceptors for authentication and error handling

ErrorTracker.js : Error tracking and logging utility (initialized in App.js)

geocoding.js : Geocoding utilities for location services

passwordUtils.js : Password validation and security utilities

clientDocumentParser.js : Markdown document parsing for client-side docs

dialogPreferences.js : User preferences for dialog behavior (localStorage)

emailInvitationValidation.js : Email invitation validation logic

onboardingNavigation.js : Onboarding route navigation helpers (detects mobile vs

desktop)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Context Providers:

One context per domain (auth, groups, stats, etc.)

Provider components in src/contexts/

Custom hooks for consuming context (e.g., useAuth())

Development Workflow

Getting Started:

Install Dependencies: npm install

Start Development Server: npm start (runs on port 4000)

Configure Backend: Ensure backend server is running on port 3000

Environment Setup: Configure Constants.js for development/production

Development Commands:

npm start : Start development server (port 4000)

npm build : Build production bundle

npm test : Run test suite (if configured)

npm run docs:all : Generate documentation (HTML and PDF)

Code Quality:

Follow React best practices (hooks, functional components)

Use ESLint for code quality

Maintain consistent naming conventions

Add comments for complex logic

Handle errors gracefully

Testing:

Test user flows end-to-end

Test responsive design on multiple screen sizes

Test authentication flows

Test API integration

Test error scenarios

Integration with Backend

API Endpoints:

All endpoints prefixed with /api/v1/

Authentication required for most endpoints (JWT token)

Standard request/response format (JSON)

Error responses follow consistent structure

Real-Time Features:

WebSocket support for live updates (planned, not yet fully implemented)

Polling for real-time data when needed (e.g., GPS locations during active treks)

Optimistic updates for better UX (e.g., immediate UI updates before API confirmation)

Context providers automatically refresh data on navigation

File Uploads:

FormData for multipart/form-data uploads

Progress tracking for large files

Thumbnail generation handled by backend

•

•

•

1.

2.

3.

4.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

File validation on client and server

Error Handling:

Network errors: Display user-friendly messages

401 errors: Automatic redirect to sign-in

403 errors: Show permission denied message

404 errors: Show not found message

500 errors: Show server error message

Performance Considerations

Optimization Strategies:

Code Splitting: Lazy load routes and components

Memoization: Use React.memo for expensive components

Virtualization: For long lists (if needed)

Image Optimization: Use appropriate image sizes and formats

Caching: Cache API responses when appropriate

Bundle Size:

Tree shaking for unused code

Dynamic imports for large libraries

Optimize images and assets

Future Enhancements

Planned Features:

Progressive Web App (PWA) support

Offline functionality

Push notifications

Enhanced mobile responsiveness

Advanced search with filters

Real-time collaboration features

Enhanced analytics dashboard

Technical Improvements:

State management migration (Redux/Zustand) if needed

Performance monitoring integration

Enhanced error tracking

Automated testing suite

TypeScript migration (if desired)

Enhanced accessibility (ARIA labels, keyboard navigation)

Resources for Developers

Key Files to Understand:

src/App.js : Main application component with routing and context provider hierarchy

src/index.js : Application entry point (React 18 root API)

src/contexts/AuthContext.js : Authentication state management, user profile,

account status

src/utils/api.js : API client configuration with interceptors

src/Constants.js : Application configuration (environment variables, URLs, API

endpoints)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

src/components/shared/Layout.js : Main layout wrapper (Header + Footer)

src/components/shared/PageWrapper.js : Page wrapper with Layout integration

src/components/shared/Header.js : Navigation header with user menu, mobile menu,

role-based navigation

src/components/shared/Footer.js : Footer with links, developer section (conditional

on role)

src/components/shared/ : Reusable component library (modals, forms, UI elements)

Documentation:

React documentation: https://react.dev

React Router documentation: https://reactrouter.com

Axios documentation: https://axios-http.com

Leaflet documentation: https://leafletjs.com

Getting Help:

Review existing components for patterns

Check shared components for reusable solutions

Review API integration examples in feature components

Consult backend API documentation for endpoint details

API Architecture

API Structure

Base URL: /api/v1/

Versioning: URL-based versioning (/api/v1/) allows for future v2 without breaking existing

clients

Endpoint Categories

Public Endpoints (No Authentication)

GET /api/v1/subscription-plans - View available plans

GET /api/v1/subscription-plans/configuration - View billing configuration

POST /api/v1/auth/signup - User registration

POST /api/v1/auth/verify-email - Email verification

POST /api/v1/auth/signin - User sign-in

POST /api/v1/auth/forgot-password - Password reset request

User Endpoints (Authentication Required)

Users: /api/v1/users/* - User profile management

Groups: /api/v1/groups/* - Group operations

Treks: /api/v1/treks/* - Trek operations

GPS Locations: /api/v1/gps-locations/* - Location tracking

Messages: /api/v1/group-messages/* , /api/v1/trek-messages/* - Communication

Comments: /api/v1/group-comments/* , /api/v1/trek-comments/* - Discussions

Assets: /api/v1/assets/* - File uploads

Moments: /api/v1/moments/* - Trek-specific photos/videos

Subscriptions: /api/v1/subscriptions/* - Subscription management

Analytics: /api/v1/analytics/* - Personal analytics

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

https://react.dev
https://reactrouter.com
https://axios-http.com
https://leafletjs.com

Admin Endpoints (Admin+ Role Required)

Users: /api/v1/admin/users/* - User management

Moderation: /api/v1/admin/content-flags/* - Content moderation

Analytics: /api/v1/admin/engagement-scores/* - System analytics

Email: /api/v1/admin/email-queue/* , /api/v1/admin/email-archives/* - Email

management

System: /api/v1/admin/system-parameters/* - System configuration

Background Processes: /api/v1/admin/background-processes/* - Process

management

Subscriptions: /api/v1/admin/subscriptions/* - Subscription management

Request/Response Format

Request Headers:

Authorization: Bearer <JWT_TOKEN>

Content-Type: application/json

Response Format:

{

 "success": true,

 "data": { ... },

 "message": "Optional message"

}

Error Response:

{

 "success": false,

 "error": "Error message",

 "details": { ... }

}

Pagination

Most list endpoints support pagination:

page (default: 1)

limit (default: 10, max: 100)

Response Format:

{

 "success": true,

 "data": [...],

 "pagination": {

 "page": 1,

 "limit": 10,

 "total": 150,

 "totalPages": 15

•

•

•

•

•

•

•

•

•

 }

}

Rate Limiting

Rate limiting is enforced based on user cost tier (free, paid, admin):

Tier-based limits per endpoint category

Configurable via rate_limit_rules table

Emergency override via EMERGENCY_DISABLE_RATE_LIMITING environment variable

API Documentation

Complete API documentation available at:

Documents/Public/Source/02-api-documentation/API.md - Comprehensive endpoint

reference

Swagger documentation (if configured) - Interactive API explorer

Database Architecture

Database Overview

PostgreSQL with PostGIS extension for geospatial capabilities

Statistics:

54 tables

32 functions (stored procedures)

45 triggers (automated actions)

270 indexes (performance optimization)

~3.5M rows (99.7% in application_logs)

1.9 GB database size

Core Tables

User Management

users - User accounts and authentication

user_profiles - Extended user information

user_roles - Role assignments (RBAC)

user_sessions - Active user sessions

user_cost_tiers - Subscription-based rate limiting tiers

user_engagement_scores - Daily engagement calculations

Groups & Treks

groups - User groups/organizations

group_users - Group membership

treks - Outdoor activities/journeys

trek_users - Trek participation

gps_locations - Real-time location tracking (PostGIS)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Communication

group_messages - Group messaging

trek_messages - Trek messaging

group_comments - Group discussions

trek_comments - Trek discussions

Content Management

assets - File metadata

moments - Trek-specific photos/videos

content_flags - Content moderation flags

flag_history - Flag action history

Subscriptions & Billing

subscription_plans - Plan definitions (Free, Pro, Team, Enterprise)

plan_features - Feature descriptions per plan (informational)

user_subscriptions - Active user subscriptions

subscription_plan_changes - Plan change history

billing_transactions - Payment records

usage_tracking - Feature usage monitoring

System Management

system_parameters - System-wide configuration

rate_limit_rules - Rate limiting configuration

email_queue - Queued email messages

email_archives - Email history

application_logs - Comprehensive audit trail

user_activity_logs - User activity tracking

Database Design Principles

Normalization: Data normalized to 3NF to prevent redundancy

Referential Integrity: Foreign key constraints ensure data consistency

Audit Trails: Comprehensive logging via application_logs and flag_history

Soft Deletes: Content flagged for deletion rather than immediately removed

Geospatial Support: PostGIS for GPS location storage and queries

JSON Support: JSONB columns for flexible data (engagement scores, raw data)

Key Relationships

Users → Groups: Many-to-many via group_users

Users → Treks: Many-to-many via trek_users

Groups → Treks: One-to-many (treks belong to groups)

Users → Subscriptions: One-to-many (users can have subscription history)

Users → Roles: Many-to-many via user_roles

Content → Flags: One-to-many (content can have multiple flags)

Database Triggers

Automated triggers handle:

User profile creation on user registration

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

4.

5.

6.

•

•

•

•

•

•

•

User cost tier updates on subscription changes

Timestamp management (created_at , updated_at)

Geometry calculation for GPS coordinates

Cascade deletions for data integrity

Database Functions

PostgreSQL functions provide:

Complex calculations (engagement scores, prorations)

Data transformations

Reusable query logic

Performance optimization

Core Features & Capabilities

Authentication & Authorization

JWT-Based Authentication:

Token-based stateless authentication

Tokens expire after 24 hours (configurable)

Refresh token support for extended sessions

Role-Based Access Control (RBAC):

7-tier role system: root , sysadmin , admin , developer , moderator , member ,

guest

Roles assigned via user_roles table

Role-based endpoint access control

Role-based rate limiting (cost tiers)

Email Verification:

Required for account activation

Secure token-based verification

Expiring verification links

Subscription & Billing

Four-Tier Pricing Model:

Free: $0/month - Basic features (5 groups, 5 members, 5 treks)

Pro: $9.99/month - Enhanced features (25 groups, 25 members, 25 treks)

Team: $24.99/month - Team features (50 groups, 50 members, 50 treks)

Enterprise: $49.99/month - Unlimited features

Stripe Integration:

Payment processing via Stripe

Webhook handling for payment events

Automatic subscription lifecycle management

Proration calculations for plan changes

Subscription Lifecycle:

Active, Grace Period, Suspended, Canceled, Expired, Paused

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Automated renewals

Grace period for payment failures (7 days)

Automatic downgrades on expiration

Real-Time Features

GPS Location Tracking:

Real-time location updates during treks

PostGIS geospatial storage and queries

Location history tracking

Proximity-based queries

WebSocket Support:

Real-time messaging

Live location updates

Instant notifications

Connection management

File Management

Hybrid Storage Strategy:

File System: Large files (photos, videos) stored on disk

Database: Small files (profile photos) stored as BYTEA

Thumbnails: Automatic generation with 'TN' suffix

Security:

File type validation

Size limits per tier

Virus scanning (if configured)

Secure file paths (hashed directory structure)

Communication System

Messaging:

Group messaging (persistent)

Trek messaging (during active treks)

Real-time delivery via WebSocket

Message history and pagination

Comments:

Comments on groups, treks, and moments

Threaded discussions

Edit/delete own comments

Moderation support

Analytics & Engagement

Engagement Scoring:

Daily engagement score calculation

Multi-factor scoring (groups, treks, messages, comments)

Historical tracking and trends

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

User segmentation

Activity Tracking:

Comprehensive user activity logging

Feature usage tracking

Analytics snapshots

System-wide statistics

Moderation System

Content Flagging:

Flag inappropriate content

Multiple flag types (spam, inappropriate, etc.)

Flag history tracking

Automated moderation workflows

Admin Moderation:

Review flagged content

Approve/reject flags

Hide/restore content

Permanent deletion

Security & Authentication

Security Layers

HTTP Security Headers (Helmet.js):

Content Security Policy (CSP)

HTTP Strict Transport Security (HSTS)

X-Frame-Options

X-Content-Type-Options

CORS Configuration:

Restricted origins

Credential support

Preflight handling

Rate Limiting:

Tier-based limits (free, paid, admin)

Category-based limits (entity_create, email_send, etc.)

Emergency override capability

Input Validation:

Joi schema validation

SQL injection prevention (parameterized queries)

XSS prevention (input sanitization)

File Upload Security:

File type validation

Size limits

•

•

•

•

•

•

•

•

•

•

•

•

•

1.

◦

◦

◦

◦

2.

◦

◦

◦

3.

◦

◦

◦

4.

◦

◦

◦

5.

◦

◦

Secure file storage

Virus scanning (optional)

Password Security:

bcrypt hashing (10 rounds)

Password complexity requirements

Secure password reset flow

Authentication Flow

Signup:

User provides email, password, name

Account created with is_verified=false

Verification email sent

Free subscription automatically assigned

Email Verification:

User clicks verification link

Account activated (is_verified=true)

User cost tier created

Sign-in enabled

Sign-In:

User provides email and password

Password verified via bcrypt

JWT token generated

Token returned to client

Active subscription required (enforced)

Token Usage:

Client includes token in Authorization: Bearer <token> header

Middleware validates token

User context attached to request

Role-based access control applied

Role Hierarchy

root (highest privilege)

 ↓

sysadmin

 ↓

admin

 ↓

developer

 ↓

moderator

 ↓

member

 ↓

guest (lowest privilege)

◦

◦

6.

◦

◦

◦

1.

◦

◦

◦

◦

2.

◦

◦

◦

◦

3.

◦

◦

◦

◦

◦

4.

◦

◦

◦

◦

Roles are assigned via user_roles table. Users can have multiple roles, with highest privilege

role used for access control.

Background Processes

Process Management

All background processes managed via PM2 with ecosystem configuration:

Configuration File: ecosystem.config.js

Process Types:

Fork Mode: Independent Node.js processes

Cron Mode: Scheduled tasks (PM2 cron syntax)

Key Background Processes

Subscription Maintenance Processor

Schedule: Every 15 minutes

Purpose: Handles subscription lifecycle (expirations, renewals, grace periods)

Tasks: Expire subscriptions, process renewals, handle grace periods

Email Queue Processor

Schedule: Every 1 minute

Purpose: Processes queued email messages

Tasks: Send emails, handle failures, retry logic

Account Cleanup Processor

Schedule: Daily at 2:00 AM

Purpose: Removes terminated accounts after grace period

Tasks: Permanently delete accounts, cleanup related data

Activity Logs Cleanup Processor

Schedule: Daily at 2:30 AM

Purpose: Prunes old activity logs, creates summaries

Tasks: Delete old logs, create daily summaries

Trek Auto-Finish Processor

Schedule: Daily at 3:00 AM

Purpose: Automatically finishes old treks

Tasks: Set trek status to "finished" for old treks

Engagement Score Processor

Schedule: Daily at 2:00 AM

Purpose: Calculates daily engagement scores

Tasks: Compute scores, store in database

Manual Control: All processes can be restarted manually via admin API endpoints

Monitoring: Process status available via /api/v1/admin/background-processes/status

•

•

1.

◦

◦

◦

2.

◦

◦

◦

3.

◦

◦

◦

4.

◦

◦

◦

5.

◦

◦

◦

6.

◦

◦

◦

Development Workflow

Getting Started

Clone Repository:

git clone <repository-url>

cd backend_node/source

Install Dependencies:

npm install

Database Setup:

Install PostgreSQL 14+ with PostGIS extension

Create database: createdb ptreks_db_dev

Run database initialization (tables created automatically on server start)

Environment Configuration:

Copy .env.example to .env

Configure database connection

Set JWT secret

Configure email settings (if needed)

Start Development Server:

npm start

or

pm2 start ecosystem.config.js

Development Commands

npm start - Start server (development mode)

npm test - Run tests (if configured)

pm2 start ecosystem.config.js - Start all processes with PM2

pm2 logs - View logs

pm2 restart <process-name> - Restart specific process

Code Organization

Directory Structure:

src/

├── config/ # Configuration files

├── controllers/ # Request handlers (business logic)

├── database/ # Database queries

├── middleware/ # Express middleware

├── models/ # Data models and validation

├── routes/ # Route definitions

├── services/ # Complex business logic

1.

2.

3.

◦

◦

◦

4.

◦

◦

◦

◦

5.

•

•

•

•

•

├── utils/ # Utility functions

└── server.js # Main server file

File Naming Conventions

Controllers: camelCase.js (e.g., userController.js)

Routes: camelCaseRoutes.js (e.g., userRoutes.js)

Services: camelCaseService.js (e.g., subscriptionService.js)

Database: camelCaseQueries.js (e.g., userQueries.js)

Models: camelCase.js (e.g., validation.js)

Git Workflow

Create Feature Branch: git checkout -b feature/your-feature-name

Make Changes: Write code, tests, documentation

Commit: git commit -m "Descriptive commit message"

Push: git push origin feature/your-feature-name

Create Pull Request: Request code review

Code Style

Indentation: 2 spaces

Quotes: Single quotes for strings

Semicolons: Required

Async/Await: Preferred over promises

Error Handling: Try-catch blocks, proper error responses

Development Patterns

Copy-and-Substitute Pattern: When creating new functionality that mirrors existing working

code, always use the copy-and-substitute pattern instead of creating code from scratch:

Copy existing working files (controllers, queries, routes, validation schemas)

Apply systematic string substitutions to rename entities (e.g., assets → moments ,

asset → moment)

Make minimal targeted modifications for differences

Benefits:

Starts with proven, working code - reduces probability of introducing new bugs

Faster development - no need to recreate patterns from scratch

Consistency - maintains existing patterns and conventions

Easier maintenance - code follows established patterns

Lower risk - builds on tested functionality

Example: When creating the "moments" system, the team copied the existing "assets" system

files and applied systematic substitutions, then made minimal modifications for differences. This

pattern is documented in Documents/Public/Source/12-development/

Development_Patterns.md .

When to Use:

Similar entities (assets/moments, users/moderators, etc.)

CRUD operations that follow the same patterns

File management systems

API endpoints with similar structures

•

•

•

•

•

1.

2.

3.

4.

5.

•

•

•

•

•

1.

2.

3.

•

•

•

•

•

•

•

•

•

Database operations with similar schemas

Configuration & Environment Variables

Configuration Management

Centralized Configuration (src/config/constants.js): The constants file serves as the

single source of truth for application-wide configuration. It reads from environment variables and

provides sensible defaults.

Key Configuration Objects:

PRICING_CONFIG:

DEFAULT_PLANS : Array of plan definitions (name, display_name, description,

price_monthly, price_yearly)

TIERS : Tier name constants (FREE, PRO, TEAM, ENTERPRISE)

ENABLE_PRICING : Master switch (default: false, requires explicit activation)

ENABLE_YEARLY_BILLING : Feature flag for yearly billing cycles

PLAN_CHANGE_STATUS : Status constants for subscription plan changes

INVOICE_CONFIG : Invoice management settings (PDF cache, cleanup, email

settings)

FILE_CONFIG:

File paths (treks, groups, moments, temp directories)

Maximum file sizes (250MB general, 15MB profile images)

Allowed file types (images, videos, documents)

Thumbnail configuration (width, quality)

HTTP_STATUS:

Standard HTTP status codes (200, 400, 401, 403, 404, 500, etc.)

ERROR_MESSAGES / SUCCESS_MESSAGES:

Centralized message constants for consistent error and success responses

BACKGROUND_PROCESS_CONFIG:

Process scheduling (intervals, start times)

Process enable/disable flags

Admin notification settings

Environment Variables

Required Environment Variables (.env file):

Database Configuration:

DB_HOST=localhost

DB_PORT=5432

DB_NAME=ptreks_db_dev

DB_USER=postgres

DB_PASSWORD=your_password_here

Server Configuration:

•

1.

◦

◦

◦

◦

◦

◦

2.

◦

◦

◦

◦

3.

◦

4.

◦

5.

◦

◦

◦

PORT=3000

NODE_ENV=development # or "production"

Security:

JWT_SECRET=your_jwt_secret_here

SESSION_SECRET=your_session_secret_here

Pricing/Billing System (Disabled by default):

Master controls - MUST be explicitly enabled

ENABLE_PRICING=false # Set to true to enable billing system

ENABLE_YEARLY_BILLING=false # Set to true to enable yearly billing cycles

Stripe Configuration (required if ENABLE_PRICING=true)

STRIPE_SECRET_KEY=sk_test_... # Use sk_test_ for development, sk_live_ for production

STRIPE_WEBHOOK_SECRET=whsec_... # Webhook signing secret

UPGRADE_PAYMENT_TIMEOUT_MINUTES=30 # Timeout for payment completion

Encryption (required if ENABLE_PRICING=true)

ENCRYPTION_KEY_PRICING=secure_random_key_min_32_chars

Email Configuration:

EMAIL_PROVIDER=resend # or "gmail" for testing

RESEND_API_KEY=your_resend_api_key_here

Or for Gmail testing:

SMTP_HOST=smtp.gmail.com

SMTP_PORT=587

SMTP_USER=your_gmail@gmail.com

SMTP_PASS=your_gmail_app_password

Rate Limiting:

Emergency override - completely disables ALL rate limiting system-wide

EMERGENCY_DISABLE_RATE_LIMITING=false # Set to true only in emergencies

Logging:

LOG_LEVEL=info # debug, info, warn, error

CONSOLE_LOG_LEVEL=warn # Console-specific log level

Configuration Best Practices

Never Hardcode Sensitive Values: Always use environment variables for secrets, API

keys, and database credentials

1.

Use Constants.js for Non-Sensitive Config: Centralize application settings in

constants.js

Provide Sensible Defaults: Constants should have fallback values for development

Document Required Variables: Update .env.example when adding new required

variables

Validate Critical Config: Check that required environment variables are set on server

startup

Feature Flags: Use environment variables for feature toggles (e.g., ENABLE_PRICING ,

ENABLE_YEARLY_BILLING)

Dynamic Configuration

PRICING_CONFIG.DEFAULT_PLANS:

Used by server.js to seed subscription_plans table on startup

Used by existingFeatures() to dynamically resolve plan IDs for plan_features

seeding

Used by validation schemas to validate plan names

Single source of truth for plan definitions - prevents hardcoded plan data

Example Usage:

// In server.js - Dynamic plan seeding

const planValues = PRICING_CONFIG.DEFAULT_PLANS.map(

 (plan) => `('${plan.name}', '${plan.display_name}', ...)`

).join(",\n");

// In validation.js - Dynamic plan name validation

name: Joi.string()

 .valid(...PRICING_CONFIG.DEFAULT_PLANS.map(p => p.name))

 .required()

// In planChangeService.js - Using tier constants

const validPlanNames = PRICING_CONFIG.DEFAULT_PLANS.map(p => p.name);

Environment-Specific Configuration

Development:

NODE_ENV=development

ENABLE_PRICING=false (default)

Test Stripe keys (sk_test_...)

Local database connection

Verbose logging enabled

Production:

NODE_ENV=production

ENABLE_PRICING=true (explicitly set)

Live Stripe keys (sk_live_...)

Production database connection

Optimized logging levels

Configuration Loading:

dotenv package loads .env file automatically

2.

3.

4.

5.

6.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Environment variables accessed via process.env.VARIABLE_NAME

Constants.js reads from environment and provides defaults

Server startup validates critical configuration

Testing & Quality Assurance

Testing Strategy

Manual Testing:

Test endpoints via Postman or curl

Verify database state after operations

Test error scenarios

Automated Testing (if configured):

Unit tests for utility functions

Integration tests for API endpoints

Database transaction tests

Testing Endpoints

Local Development:

Server: http://localhost:3000

API Base: http://localhost:3000/api/v1

Test Users:

Admin: admin@example.com (password in documentation)

Test users created via signup endpoint

Common Test Scenarios

Authentication: Signup, signin, token validation

Authorization: Role-based access control

CRUD Operations: Create, read, update, delete

Pagination: List endpoints with pagination

Error Handling: Invalid inputs, missing data, unauthorized access

Rate Limiting: Verify tier-based limits

Subscriptions: Plan changes, prorations, renewals

Deployment & Operations

Production Deployment

PM2 Process Management:

All processes managed via PM2

Ecosystem configuration for process definitions

Automatic restart on failure

Log rotation and management

•

•

•

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

4.

5.

6.

7.

•

•

•

•

Environment Variables:

Database connection strings

JWT secrets

Stripe API keys

Email configuration

Feature flags

Monitoring

Logs:

Application logs: logs/application-*.log

Error logs: logs/error-*.log

PM2 logs: pm2 logs

Health Checks:

API health endpoint (if configured)

Database connection status

Background process status

Backup Strategy

Database Backups:

Regular PostgreSQL backups

Point-in-time recovery capability

Backup retention policy

File System Backups:

Asset files backed up separately

Thumbnail preservation

Backup verification

Future Roadmap

Planned Features

Mobile App Development: Native iOS/Android applications

Advanced Analytics: Enhanced reporting and insights

Social Features: User connections, following, activity feeds

Event Management: Event scheduling and RSVP system

Payment Enhancements: Apple Pay, Google Pay integration

API v2: Enhanced API with GraphQL support

Internationalization: Multi-language support

Advanced Search: Elasticsearch integration

Real-Time Notifications: Push notifications

White-Label Options: Custom branding for Enterprise

Technical Improvements

Performance Optimization: Query optimization, caching

Scalability: Horizontal scaling, load balancing

Monitoring: APM integration, performance monitoring

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

1.

2.

3.

Testing: Comprehensive test suite

Documentation: Enhanced API documentation, tutorials

Quick Reference

Important Files

Main Server: src/server.js

API Documentation: Documents/Public/Source/02-api-documentation/API.md

Database Schema: Documents/Public/Source/05-database/

Database_Table_Definitions.md

Architecture: Documents/Public/Source/12-development/

Architectural_Approach.md

PM2 Config: ecosystem.config.js

Common Tasks

Add New Endpoint:

Add route in src/routes/

Add controller in src/controllers/

Add validation in src/models/validation.js

Add database query in src/database/

Update API documentation in Documents/Public/Source/02-api-documentation/

API.md

Update apiController.js changelog if needed

Add New Background Process:

Create process file

Add to ecosystem.config.js

Configure schedule

Add restart endpoint (optional)

Database Migration:

Add table creation in src/server.js

Test on development database

Update Database_Table_Definitions.md

Document changes

Key Constants & Configuration

Quick Reference:

Constants File: src/config/constants.js - See Configuration & Environment

Variables section for details

Environment Variables: .env file - See Configuration & Environment Variables section

for complete list

Key Config Objects: PRICING_CONFIG , FILE_CONFIG , HTTP_STATUS ,

ERROR_MESSAGES , SUCCESS_MESSAGES , BACKGROUND_PROCESS_CONFIG

Critical Flags: ENABLE_PRICING (default: false), ENABLE_YEARLY_BILLING (default:

false), EMERGENCY_DISABLE_RATE_LIMITING (emergency override)

Database Config: src/config/database.js - PostgreSQL connection pool

4.

5.

•

•

•

•

•

1.

2.

3.

4.

5.

6.

1.

2.

3.

4.

1.

2.

3.

4.

•

•

•

•

•

Support Resources

Documentation: Documents/Public/Source/ - Comprehensive documentation

organized by category

API Reference: Documents/Public/Source/02-api-documentation/API.md -

Complete endpoint documentation

Architecture Docs: Documents/Public/Source/12-development/ - Architectural

patterns and development guides

Database Docs: Documents/Public/Source/05-database/ - Schema definitions and

database management

Development Patterns: Documents/Public/Source/12-development/

Development_Patterns.md - Copy-and-substitute pattern and best practices

File Organization: Documents/Public/Source/11-system-management/

File_Organization_on_Backend.md - Backend file structure guide

Common Development Patterns

Copy-and-Substitute Pattern (Recommended for Similar Features): When creating

functionality similar to existing code:

Copy existing working files (controller, queries, routes, validation)

Apply systematic string substitutions (e.g., sed -i 's/assets/moments/g')

Make minimal targeted modifications for differences

Test thoroughly

Benefits: Reduces bugs, faster development, maintains consistency, easier maintenance.

Example: The "moments" system was created by copying the "assets" system and applying

substitutions. This pattern is documented in Development_Patterns.md .

Dynamic Plan ID Resolution: When working with subscription plans, always query the

database for plan IDs instead of hardcoding:

// ✅ Good - Dynamic resolution

const planIdsResult = await pool.query(

 'SELECT id, name FROM subscription_plans WHERE name = ANY($1::text[])',

 [planNames]

);

const planIdMap = {};

planIdsResult.rows.forEach(row => { planIdMap[row.name] = row.id; });

// ❌ Bad - Hardcoded IDs

const freePlanId = 1; // Breaks if IDs change

Constants Usage:

Use PRICING_CONFIG.DEFAULT_PLANS for plan definitions

Use PRICING_CONFIG.TIERS for tier name constants

Import from constants.js rather than hardcoding values

Database triggers may contain hardcoded plan names (acceptable - they execute at

PostgreSQL level)

•

•

•

•

•

•

1.

2.

3.

4.

•

•

•

•

Conclusion

pTreks is a sophisticated, production-ready platform for outdoor activity management with

comprehensive administrative capabilities. This guide provides the foundation for understanding

the system architecture, both client applications (end-user and admin dashboard), API structure,

database design, and development workflows. The guide includes detailed documentation for

both the end-user React client application and the admin dashboard React application, covering

their respective architectures, features, and development patterns.

Whether you're working on the backend API, the end-user client for outdoor enthusiasts, or the

powerful admin dashboard for system management, this guide provides the essential information

to get started and work effectively on the pTreks platform.

For detailed information on specific features, refer to the comprehensive documentation in the

Documents/Public/Source/ directory.

Welcome to the pTreks development team!

Last Updated: December 18, 2025

Generated by makeHTMLDocuments.js | pTreks Documentation System

	Developer Onboarding Guide
	pTreks Developer Onboarding Guide
	Version
	Executive Summary
	Table of Contents
	System Overview
	What is pTreks?
	Key Value Propositions
	System Scale

	Technology Stack
	Backend Core
	Key Dependencies
	Development Tools

	System Architecture
	Layered Architecture
	Request Flow
	Background Processes

	Client Applications
	End-User Client Application
	Authentication & User Management
	Groups Management
	Treks Management
	Communication
	File Management
	Subscription Management
	Personal Features

	Admin Dashboard Application
	User Management
	Content Moderation
	Analytics & Reporting
	Subscription Management
	System Configuration
	Email Management
	Background Process Management
	Security & Audit
	API Documentation & Reference
	Documentation Management
	Statistics & Monitoring
	Content Management

	Admin Dashboard React Application
	Overview
	Technology Stack
	Application Architecture
	State Management
	Component Organization
	Styling Approach
	API Integration
	Key Features & User Experience
	Development Patterns
	File Organization Best Practices
	Development Workflow
	Integration with Backend
	Performance Considerations
	Unique Features
	Future Enhancements
	Resources for Developers

	End-User React Client Application
	Overview
	Technology Stack
	Application Architecture
	State Management
	Component Organization
	Styling Approach
	API Integration
	Key Features & User Experience
	Development Patterns
	File Organization Best Practices
	Development Workflow
	Integration with Backend
	Performance Considerations
	Future Enhancements
	Resources for Developers

	API Architecture
	API Structure
	Endpoint Categories
	Public Endpoints (No Authentication)
	User Endpoints (Authentication Required)
	Admin Endpoints (Admin+ Role Required)

	Request/Response Format
	Pagination
	Rate Limiting
	API Documentation

	Database Architecture
	Database Overview
	Core Tables
	User Management
	Groups & Treks
	Communication
	Content Management
	Subscriptions & Billing
	System Management

	Database Design Principles
	Key Relationships
	Database Triggers
	Database Functions

	Core Features & Capabilities
	Authentication & Authorization
	Subscription & Billing
	Real-Time Features
	File Management
	Communication System
	Analytics & Engagement
	Moderation System

	Security & Authentication
	Security Layers
	Authentication Flow
	Role Hierarchy

	Background Processes
	Process Management
	Key Background Processes

	Development Workflow
	Getting Started
	Development Commands
	Code Organization
	File Naming Conventions
	Git Workflow
	Code Style
	Development Patterns

	Configuration & Environment Variables
	Configuration Management
	Environment Variables
	Configuration Best Practices
	Dynamic Configuration
	Environment-Specific Configuration

	Testing & Quality Assurance
	Testing Strategy
	Testing Endpoints
	Common Test Scenarios

	Deployment & Operations
	Production Deployment
	Monitoring
	Backup Strategy

	Future Roadmap
	Planned Features
	Technical Improvements

	Quick Reference
	Important Files
	Common Tasks
	Key Constants & Configuration
	Support Resources
	Common Development Patterns

	Conclusion

